统计习题4(2)
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
第四章(二) 集中趋势与离中趋势的度量习题 一、填空题 1.平均数就是在——内将各单位数量差异抽象化,用以反映总体的 。 2.权数对算术平均数的影响作用不决定于权数 的大小,而决定于权数的 的大小。 3.几何平均数是 ,它是计算 和平均速度的最适用的一种方法。 4.当标志值较大而次数较多时,平均数接近于标志值较 的一方;当标志值较小而次数较多时,平均数靠近于标志值较 的一方。 5.当 时,加权算术平均数等于简单算术平均数。 6.利用组中值计算加权算术平均数是假定各组内的标志值是 分布的,其计算结果是一个 。 7.统计中的变量数列是以 为中心而左右波动,所以平均数反映了总体分布的 。 8.中位数是位于变量数列 的那个标志值,众数是在总体中出现次数 的那个标志值。中位数和众数也可以称为 平均数。 9.调和平均数是平均数的一种,它是 的算术平均数的 。 10.现象的 是计算或应用平均数的原则。 11.当变量数列中算术平均数大于众数时,这种变量数列的分布呈 分布;反之算术平均数小于众数时,变量数列的分布则呈 分布。 12.较常使用的离中趋势指标有 、 、 、 、 。 13.极差是总体单位的 与 之差,在组距分组资料中,其近似值是 。 14.是非标志的平均数为 、标准差为 。 15.标准差系数是 与 之比。 16.已知某数列的平均数是200,标准差系数是30%,则该数列的方差是 。 17.已知某数列的分布如下: 变量值 次数 2 2 3 4 5 7 9 13 10 10 12 6 则该数列的极差为 ,四分位差为 。 18.对某村6户居民家庭共30人进行调查,所得的结果是,人均收入400元,其离差平方和为5100000,则标准差是 ,标准差系数是 。 19.测定峰度,往往以 为基础。依据经验,当β=3时,次数分配曲线为 ;当β<3时,为 曲线;当β>3时,为 曲线。 20.在对称分配的情况下,平均数、中位数与众数是 的。在偏态分配的情况下,平均数、中位数与众数是 的。如果众数在左边、平均数在右边,称为 偏态。如果众数在右边、平均数在左边,则称为 偏态。 21.采用分组资料,计算平均差的公式是 ,计算标准差的公式是 。 二、单项选择题 1.加权算术平均数的大小( ) A受各组次数f的影响最大 B受各组标志值X的影响最大 C只受各组标志值X的影响 D受各组次数f和各组标志值X的共同影响 2,平均数反映了( ) A总体分布的集中趋势 B总体中总体单位分布的集中趋势 C总体分布的离散趋势 D总体变动的趋势 3.在变量数列中,如果标志值较小的一组权数较大,则计算出来的算术平均数( ) A接近于标志值大的一方 B接近于标志值小的一方 C不受权数的影响 D无法判断 4.根据变量数列计算平均数时,在下列哪种情况下,加权算术平均数等于简单算术平均数( ) A各组次数递增 B各组次数大致相等 C各组次数相等 D各组次数不相等 5.已知某局所属12个工业企业的职工人数和工资总额,要求计算该局职工的平均工资,应该采用( ) A简单算术平均法 B加权算术平均法 C加权调和平均法 D几何平均法 6.已知5个水果商店苹果的单价和销售额,要求计算5个商店苹果的平均单价,应该采用( ) A简单算术平均法 B加权算术平均法 C加权调和平均法 D几何平均法 7.计算平均数的基本要求是所要计算的平均数的总体单位应是( ) A大量的 B同质的 C差异的 D少量的 8,某公司下属5个企业,已知每个企业某月产值计划完成百分比和实际产值,要求计算该公司平均计划完成程度,应采用加权调和平均数的方法计算,其权数是( ) A计划产值 B实际产值 C工人数 D企业数 9.中位数和众数是一种( ) A代表值 B常见值 C典型值 D实际值 10.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( ) A各组的次数必须相等 B各组标志值必须相等 C各组标志值在本组内呈均匀分布 D各组必须是封闭组 11.四分位数实际上是一种( ) A算术平均数 B几何平均数 C位置平均数 D数值平均数 12.离中趋势指标中,最容易受极端值影响的是( ) A极差 B平均差 C标准差 D标准差系数 13.平均差与标准差的主要区别在于( ) A指标意义不同 B计算条件不同 C计算结果不同 D数学处理方法不同 14.某贸易公司的20个商店本年第一季度按商品销售额分组如下: 按商品销售额分组(万元) 商店个数(个) 20以下 1 20-30 5 30-40 9 40-50 3 50以上 2 则该公司20个商店商品销售额的平均差为( ) A7万元 B1万元 C12 万元 D 3万元 15.已知某班40名学生,其中男、女学生各占一半,则该班学生性别成数方差为( ) A25% B 30% C 40% D 50% 16.当数据组高度偏态时,哪一种平均数更具有代表性? ( ) A算术平均数 B中位数 C众数 D几何平均数 17.方差是数据中各变量值与其算术平均数的( ) A离差绝对值的平均数 B离差平方的平均数 C离差平均数的平方 D离差平均数的绝对值 18.一组数据的偏态系数为1.3,表明该组数据的分布是( ) AlE态分布 B平顶分布 C左偏分布 D右偏分布 19.当一组数据属于左偏分布时,则( ) A平均数、中位数与众数是合而为一的 B众数在左边、平均数在右边 C众数的数值较小,平均数的数值较大 D众数在右边、平均数在左边 20.四分位差排除了数列两端各( )单位标志值的影响。 A 1096 B 15% C25% D 35% 三、多项选择题 1.在各种平均数中,不受极端值影响的平均数是( ) A算术平均数 B调和平均数 C中位数 D几何平均数 E众数 2.加权算术平均数的大小受哪些因素的影响( ) A受各组频数或频率的影响 B受各组标志值大小的影响 C受各组标志值和权数的共同影响 D只受各组标志值大小的影响 E只受权数大小的影响 3.平均数的作用是( ) A反映总体的一般水平 B对不同时间、不同地点、不同部门的同质总体平均数进行对1 C测定总体各单位的离散程度 D测定总体各单位分布的集中趋势 E反映总体的规模 4.众数是( ) A位置平均数 B总体中出现次数最多的标志值 C不受极端值的影响 D适用于总体单位数多,有明显集中趋势的情况 E处于变量数列中点位置的那个标志值 5.在什么条件下,加权算术平均数等于简单算术平均数( )。 A各组次数相等 B各组标志值不等 C变量数列为组距变量数列 D各组次数都为1 E各组次数占总次数的比重相等 6.加权算术平均数的计算公式有( ) fA B nff D C fm E n 1mxx 7.计算和应用平均数的原则是( ) A现象的同质性 B用组平均数补充说明总平均数 C用变量数列补充说明平均数 D用时间变量数列补充说明平均数 E把平均数和典型事例结合起来 8.下列变量数列中可以计算算术平均数的有( ) A变量数列 B等距变量数列 C品质变量数列 D时间变量数列 E不等距变量数列 9.几何平均数主要适用于( ) A标志值的代数和等于标志值总量的情况 B标志值的连乘积等于总比率的情况 C标志值的连乘积等于总速度的情况 D具有等比关系的变量数列 E求平均比率时 10.中位数是( ) A由标志值在变量数列中所处的位置决定的 B根据标志值出现的次数决定的 C总体单位水平的平均值 D总体一般水平的代表值 E不受总体中极端数值的影响 11.有些离中趋势指标是用有名数表示的,它们是( ) A极差 B平均差 C标准差 D平均差系数 E四分位差 12.不同总体间的标准差不能简单进行对比,是因为( ) A平均数不一致 B标准差不一致 C计量单位不一致 D总体单位数不一致 E与平均数的离差之和不一致 13.不同数据组间各标志值的差异程度可以通过标准差系数进行比较,因为标准差系数( ) A消除了不同数据组各标志值的计量单位的影响 B消除了不同数列平均水平高低的影响 C消除了各标志值差异的影响 D数值的大小与数列的差异水平无关 E数值的大小与数列的平均数大小无关 14.下列指标中,反映数据分布的对称、尖峭程度的指标有( ) A标准差分位值 B偏度系数 C峰度系数 D标准差系数 E标准差 15.若一组数据的偏度系数是—0.25,则下列说法正确的有( ) A平均数、中位数与众数是分离的 B众数在左边、平均数在右边 C数据的极端值在右边,数据分配曲线向右延伸 D众数在右边、平均数在左边 E数据的极端值在左边、数据分配曲线向左延伸 16.若某个观察值的标准差分位值为—1.5,则下列说法正确的有( ) A该观察值低于平均数 B该观察值高于平均数 C该观察值比该数据组的平均数低1.5个标准差 D该观察值比该数据组的平均数高1.5个标准差 E该观察值比该数据组的平均数低1.5个单位 17.关于峰度系数,下列说法正确的有( ) A当β=3时,次数分配曲线为正态曲线 B当β<3时,为平顶曲线 C当β接近于1.8时,次数分配趋向一条水平线 D当β小于1.8时,次数分配曲线是“U”形分配 E如果9的数值越大于3,则次数分配曲线的顶端越尖峭。 18.关于极差,下列说法正确的有( ) A只能说明变量值变异的范围 B不反映所有变量值差异的大小 C反映数据的分配状况 D最大的缺点是受极端值的影响 E最大的优点是不受极端值的影响 19.下列指标中,反映数据组中所有数值变异大小的指标有( ) A四分位差 B平均差 C标准差 D极差 E离散系数 四、判断题 1.权数对算术平均数的影响作用取决于权数本身绝对值的大小。( ) 2.算术平均数的大小,只受总体各单位标志值大小的影响。 ( ) 3.在特定条件下,加权算术平均数可以等于简单算术平均数。( ) 4.中位数和众数都属于平均数,因此它们数值的大小受到总体内各单位标志值大小的影响。( ) 5.分位数都属于数值平均数。( ) 6.在资料已分组时,形成变量数列的条件下,计算算术平均数或调和平均数时,应采用简单式;反之,采用加权式。( ) 7.当各标志值的连乘积等于总比率或总速度时,宜采用几何平均法计算平均数。( ) 8.众数是总体中出现最多的次数。( ) 9.未知计算平均数的基本公式中的分子资料时,应采用加权算术平均数方法计算。( ) 10.按人口平均的粮食产量是一个平均数。( ) 11.变量数列的分布呈右偏分布时,算术平均数的值最小。 ( ) 12.若数据组的均值是450,标准差为20,那么,所有的观察值都在450±20的范围内。( ) 13.是非标志的标准差是总体中两个成数的几何平均数。( ) 14.总体中各标志值之间的差异程度越大,标准差系数就越小。 ( ) 15.同一数列,同时计算平均差,标准差,二者必然相等。( ) 16.如果两个数列的极差相同,那么,它们的离中程度就相同。( ) 17.离中趋势指标既反映了数据组中各标志值的共性,又反映了它们之间的差异性。( ) 18.若两组数据的平均数与标准差均相同,则其分布也是相同的。( ) 19.在对称分布的条件下,高于平均数的离差之和与低于平均数的离差之和,必然相等,全部的离差之和一定等于0。( ) 20.数据组中各个数值大小相当接近时,它们的离差就相对小,数据组的标准差就相对小。( ) 21.偏态系数与峰度系数的取值范围都是—3与+3之间。( ) 五、简答题 1.反映总体集中趋势的指标有哪几种?集中趋势指标有什么特点和作用? 2.如何理解权数的意义?在什么情况下,应用简单算术平均数和加权算术平均数计算的结果是一致的? 3.加权算术平均数和加权调和平均数有何区别与联系? 4.平均数的计算原则是什么? 5.简述算术平均数、中位数、众数三者之间的关系? 6.什么是离中趋势指标?它有哪些作用? 7.离中趋势指标有哪些,它们之间有何区别? 8.如何对任意两个总体平均数的代表性进行比较? 9.什么是偏度?它有几种测定方法? 10.什么是峰度?它有几种类型? 六、计算题 1.某厂对三个车间一季度生产情况分析如下: 第一车间产际产量为190件,完成计划95%;第二车间实际产量250件,完成计划100%;第三车间实际产量609件,完成计划105%。三个车间产品产量的平均计划完成程度为:95%100%105%100%另外,一车间产品单位成本为18元/件,二车间产品单位成本为318121515元12元/件,三车间产品单位成本为15元/件,则:个车间平均单位成本为:3/件。 以上平均指标的计算是否正确?如不正确请说明理由并改正。 2.2001年某月份甲、乙两农贸市场某农产品价格和成交量、成交额资料如下: 品种 甲 乙 丙 合计 价格(元/斤) 1.2 1.4 1.5 — 甲市场成交额(万元) 1.2 2.8 1.5 5.5 乙市场成交量(万斤) 2 1 1 4 试问哪一个市场农产品的平均价格高?并说明原因。 3.某厂生产某种机床配件,要经过三道生产工序,现生产一批该产品在各道生产工序上的合格率分别为95.74%、93.48%、97.23%。根据资料计算三道生产工序的平均合格率。 4.已知某企业有如下资料: 按计划完成百分比分组(%) 80——90 90——100 100———110 110———120 实际产值(万元) 986 1057 1860 1846 计算该企业按计划完成百分比。 5.某市场有三种不同的苹果,其每斤价格分别为2元,3元和4元,试计算:(1)各买一斤,平均每斤多少钱?(2)各买一元,平均每斤多少钱? 6.某高校某系学生的体重资料如下: 按体重分组(公斤) 52以下 52—55 55—58 58——61 61以上 合计 学生人数(人) 28 39 68 53 24 212 试根据所给资料计算学生体重的算术平均数、中位数、众数。 7.已知某公司职工的月工资收入为965元的人数最多,其中,位于全公司职工月工资收入中间位置的职工的月工资收入为932元,试根据资料计算出全公司职工的月平均工资。并指出该公司职工月工资收入变量数列属于何种偏态? 8.对成年组和幼儿组共500人身高资料分组,分组资料列表如下: 成年组 按身高分组(cm) 150—155 155—160 160—165 165—170 170以上 合计 人数(人) 30 120 90 40 20 300 70—75 75—80 80—85 85—90 90以上 合计 幼儿组 按身高分组(cm) 人数(人) 20 80 40 30 30 200 要求:(1)分别计算成年组和幼儿组身高的平均数、标准差和标准差系数。 (2)说明成年组和幼儿组平均身高的代表性哪个大?为什么? 9.当每天生产线的每小时产量低于平均每小时产量,并落入大于2个标准差时,该生产线被认为是“失去控制”。对该生产线来说,昨天平均每小时产量是370件,其标准差每小时为5件。下面是该天头几个小时的产量,该生产线在什么时候失去了控制? 时间 产量 8:00 369 9:00 367 10:00 365 11:00 363 12:00 361 1:00 359 2:00 357 10.你是定时器的购买者,定时器在新道路爆破中用来起爆炸药。你必须在两个供应者之间选择,分别用A和B表示。在各自的说明书中,你发现由A出售的导火线引爆的平均时间为30秒,其标准差为0.5秒;而由B出售的导火线引爆的平均时间为30秒,其标准差为6秒。请你做出选择,并说明原因。 11.雇员要进行两项能力测试。在A项测试中,其平均分为100分,标准差为15分;在B项测试中,其平均分为400分,标准差为50分。李明在A项测试中得了115分,在B项测试中得了 425分。与平均数相比,李明的哪一项测试更为理想?请通过计算李明的每项测试的标准差分位值来寻求答案。 第五章 习题参考答案 一、填空题 1.同质总体、集中趋势 2.绝对值、比重 3.n个标志值连乘积的n次方根、平均比率 4.大、小 5.各组权数相等 6.均匀、假定值 7.平均数、集中趋势 8.中间位置、最多、位置 9.标志值倒数、倒数 10.同质性 11.左偏、右偏 12.极差、分位差、平均差、标准差、离散系数 13.最大标志值、最小标志值、最高组的上限—最低组的下限 14.pp(1p) 15.标准差、其平均数 16.3600 17.10、2.5、2.65、3.07 18.412.31、1.03 19.四次动差m4、正态曲线、平顶曲线、尖顶曲线 20.合而为一、分离的、右偏、左偏 21.M.Dff (xx)f2f 二、单项选择题 1.D 2.B 3.B 4.C 5.A 6.C 7.B 8.B 9.A 10.C 11.C 12.A 13.D 14.A 15.A 16.C 17.B 18.D 19.D 20.C 三、多项选择题 1.CE 2.ABC 3.ABD 4.ABCD 5.ADE 6.BC 7.ABCE 8.ABE 9.BCE 10.ADE 11.ABCE 12.AC 13.AB 14.BC 15.ABCD 16.ADE 17.ABCDE 18.ABD 19.BCE 四、判断题 1.× 2.× 3.√ 4.× 5.× 6.× 7.√ 8.× 9.√ 10.× 11.× 12.× 13.√ 14.× 15.× 16.× 17.× 18.× 19.√ 20.√ 21.× 五、简答题 (略) 六、计算题 1.两种计算均不正确。 平均计划完成程度的计算,因各车间计划产值不同,不能对其进行简单平均,这样也不符合计划完成程度指标的特定涵义。正确的计算方法是: 平均计划完成程度xH=101.84% 平均单位成本的计算也因各车间的产量不同,不能简单相加,产量的多少对平均单位成本有直接影响。所以正确的计算方法为: 平均单位成本=14.83元/件 = 2.成交额单位:万元,成交量单位:万斤 甲市场平均价格=1.375元 乙市场平均价格=1.325元 说明:两个市场销售单价是相同的,销售总量也是相同的,影响两个市场平均价格高低不同的原因就在于各种价格的农产品在两个市场的成交量不同。甲市场销售价格较高的乙产品量最多,而乙市场销售价格最低的甲产品最多,因而使得甲市场的平均价格高于乙市场。这就是权数在平均数形成中所起的权衡轻重的作用,如果将两个市场的各级成交量占总成交量的比重计算出来,则更能看出权数的作用。 3.三道工序的平均合格率=95.47% 4. 平均计划完成程度=101.77% 5.(1)各买一斤时的平均价格=3元 (2)各买一元时的平均价格=2.77元 6.先列表计算有关资料如下: 按体重分组(公斤) 52以下 52—55 55—58 58—61 61以上 合 计 组中值(x) 50.5 53.5 56.5 59.5 62.5 —— 学生人数(人)(f) 28 39 68 53 24 212 (xf) 1414.0 2086.5 3842.0 3153.5 1500.0 11996.0 向上累计次数 28 67 135 188 212 —— (1)学生平均体重=56.58(公斤) (2)学生体重中位数=56.72(公斤) (3)学生体重众数=56.98(公斤) 7.月平均工资为=915.50(元) 8.(1) 成人组 __x160.83(厘米) 5.22(厘米)V3.25%幼儿组 __x81.75(厘米) 6.18(厘米)V7.56% (2)成年组平均身高与幼年组平均身高相比,其平均数的代表性大些,因为其标准差系数小。9.产量控制界限的上限为380(件) 产量控制界限的下限为360(件) 因此,该生产线在下午1时失去控制。 10.应选择由A出售的定时器。 11.A项测试:李明的标准化分位值是1 B项测试:李明的标准化分位值是0.5 因此李明的A项测试较为理想。 本文来源:https://www.wddqw.com/doc/58f81a2451ea551810a6f524ccbff121dc36c540.html