
在行测的行程问题中,有很多种不同的数学模型,其中青蛙跳井问题是其中常考到的一种考点,并且是看起来容易却很容易出错的一种题型,今天中公教育专家就来简单介绍一下什么是青蛙跳井问题。
一、知识铺垫
1、什么是极限思想
所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。如一条船顺水而下用时t1,逆流而上用时t2,则当水速增大时,t1+t2如何变化?当水速增大时,t1会变小,而t2会变大,但是,t1与t2,哪个变化大不知道,所以t1+t2如何变化也不清楚。此时如果改用极限的思想来思考的话就会比较简单,假设水速增大到无限大,则此船肯定回不来了,即t2无限大,此时虽然t1变小,但相对于t2而言,t1的变化幅度要小得多。所以,t1+t2变大了。
2、适用极限思想的题的题型特征
题干或问法中出现或最小、最多或最少、至多或至少。
3、极限思想的核心:凑、均、等、接近
二、极限思想之和定最值的应用
1、什么是和定最值
和定最值:多个数的和一定,求其中某个数的或最小值问题。
2、和定最值中的6种问法及对应的解题要点
①求量的值:让其他值尽量小。
例:5个箱子总重50公斤,且重量排在前三位的箱子总重不超过重量排在后三位的箱子总重的1.5倍,问最重的箱子重量最多是多少斤?
②求最小量的最小值:让其他值尽量大。
例:6个数的和为48,已知各个数各不相同,且的数是11分,则最小数最少是多少?
③求第N大的数的值(N即不是,也不是最小,如第二大的数的值):让其他值尽量小。
例:有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,且分得鲜花数最多的人不超过7朵,则分得鲜花第二多的人最多分得几朵鲜花?
④求第N大的数的最小值(N即不是,也不是最小,如第二大的数的值):让其他值尽量大。
⑤求量的最小值:让各个分量尽可能的“均等”,且保持大的量仍大、小的量仍小。
例:现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得几朵鲜花?
⑥求最小量的值:让各个分量尽可能的“均等”,且保持大的量仍大、小的量仍小。
例:现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最少的人最多分得几朵鲜花?
【小结】一般情况下,第一种情况,题干中会出现所求量与其他量之间的不等式关系;第二种情况,题干中数的值有一定的限制条件;后四种情况,题干中会出现“这些数各不相同”的条件。
正在阅读:
2016年政法干警考试行测备考:极限思想之和定最值04-09
中班班务第二学期工作计划模板202109-29
2022年湖南湘潭会计继续教育时间:2023年6月底前完成09-07
小学三年级语文《庐山的云雾》课件【三篇】12-13
2017年软件设计师考试冲刺模拟试题02-23
有关教师的教育格言摘抄五篇08-17
初二抒情哲理散文:流逝_150字03-13
幼师实习总结报告三篇04-03