测试电流电压有效值的时候,多数情况下,不能使用普通万用表测试数据,而要使用真有效值万用表,原因在于计算功率时候要使用有效值测量,而普通万用表测试时所显示的有效值是通过纯正弦波形校正后得到,但是此时电流波形不是真正的正弦波。若使用普通万用表,可以通过以下推导过程得出电流真有效值。 首先假设纯正弦电压波形可以用下式表示 U(t)2Usint ……………….(1) 波形为 由定义计算平均值Uavg Uavg将(1)式代入(2)式得 1TT0U(t)dt …………..……….(2) Uavg1T2222UsintdtU0.9U…………………..(3) T02另外,将(1)式进行傅里叶变换可得 U(t)22U222………………(4) 1cos2tcos4tcos6t..........31535由万用表测试计算原理有 Uavg1nlimU(k)…………………..(5) nnk1由定义求得有效值(即均方根值) Urms1TT0U2(t)dtU………………(6) 在普通万用表中所显示的有效值为通过计算平均值Uavg,然后校正后计算出有效值即 Urms1.1Uavg………………….(7) (7)式所示的电压有效值与平均值是基于纯正弦波电压推导得出,对于含有谐波的电第1页 共3页 压波形则不适用 假如将(1)式所述波形电压接入非线性负载,则可以设定电流波形为表达式为 i(t)2I1sin(t1)2I2sin(t2)2I3sin(t3)...... ……….(8) 由定义求平均值可得 Iavg1TT0i(t)dt …………….(9) 将(8)代入(9)式,所得积分无法计算,故选用其他方式计算。 将(8)式按照傅里叶变换,可以得出 i(t)IF0IF1costIF2cos2tIF3cos3t...... ……………(10) 由(10)式可知,电流波形由基波和各次谐波组成 由定义,计算电流有效值 Irms将(8)式代入(11式)可得 1TT0i2(t)dt …………..(11) 222IrmsI12I2I32I4......InII21k2n2k ……………(12) 由(8)式可知I1为基波电流,而其他项为电流谐波,即: THD由(12)、(13)可得 Ik2n2kI12 ………………..(13) IrmsI11THD2 ……………..(14) (14)式则为含有谐波电流的电流波形通过平均值计算有效值的计算公式 根据瞬时功率定义 P(t)U(t)*i(t)…………..(15) 第2页 共3页 将(1)、(8)式代入(15)式,并根据有功功率定义,有功功率 P1TP(t)dtUI1cos1 ……………..(16) 0T式(16)为输入电压为纯正弦波形、电流含有谐波的功率计算表达式。 更进一步,若(1)式所表示的电压具有谐波,则其表达式变为 U(t)2U1sint2U2sin2t2U3sin3t...... ………..(17) 由此,同理可得当电压、电流同时含有谐波成分时,其有功功率的表达式如式(18)所示 P1TT0P(t)dtU1I1cos1U2I2cos2U3I3cos3...... …………(18) 第3页 共3页 本文来源:https://www.wddqw.com/doc/ab3e704126c52cc58bd63186bceb19e8b8f6ec3d.html